/**/

Clareus Scientific Medical Sciences (ISSN: 3064-8017)

Research Article | Volume 3 Issue 1 - 2026

Ab Initio Whole Cell Kinetic Model of Streptococcus pneumoniae NCTC 7465 (spnLHP26)

Leesha Haarshiny Perumal1,2, Atoshi Abirami RajKumar1,2, Cheryl Kai Ning Kang1,2, Sragvi Verma1,2, Diya Nanthakumarvani1,2, Shafeeqa Abul-Hasan1,2 and Maurice HT Ling2,3,4*
1Department of Applied Sciences, Northumbria University, United Kingdom
2Management Development Institute of Singapore, Singapore
3Newcastle Australia Institute of Higher Education, University of Newcastle, Australia
4HOHY PTE LTD, Singapore

*Corresponding Author: Maurice HT Ling, Management Development Institute of Singapore, Singapore; Newcastle Australia Institute of Higher Education, University of Newcastle, Australia; HOHY PTE LTD, Singapore.

 January 26, 2026

DOI: 10.70012/CSMS-03-015

Abstract

Streptococcus pneumoniae is a pathogen able to utilize various carbon sources to produce polysaccharide capsule to avoid the immune system, leading to responsible for many life-threatening infections. Kinetic models may be used to examine S. pneumoniae’s carbon utilization but there are no whole-cell kinetic models of S. pneumoniae to date. In this study, we construct a whole-cell kinetic model based on S. pneumoniae NCTC 7465 using its annotated genome. The resulting model, spnLHP26, consists of 460 enzymes catalysing 836 reactions involving 163 metabolites; which may be suitable as a baseline draft model to examine virulence-associated metabolic susceptibilities of S. pneumoniae.

Keywords: Whole-cell model; Kinetic model; Differential equations; AdvanceSyn Toolkit

References

  1. Brooks LRK and Mias GI. “Streptococcus pneumoniae’s Virulence and Host Immunity: Aging, Diagnostics, nd Prevention”. Frontiers in Immunology 9 (2018): 1366.
  2. Lynch J and Zhanel G. “Streptococcus pneumoniae: Epidemiology, Risk Factors, and Strategies for Prevention”. Seminars in Respiratory and Critical Care Medicine 30.02 (2009): 189-209.
  3. Geno KA., et al. “Pneumococcal Capsules and Their Types: Past, Present, and Future”. Clinical Microbiology Reviews 28.3 (2015): 871-899.
  4. Leonard A and Lalk M. “Infection and Metabolism - Streptococcus pneumoniae Metabolism Facing the Host Environment”. Cytokine 112 (2018): 75-86.
  5. Obolski U., et al. “The Metabolic, Virulence and Antimicrobial Resistance Profiles of Colonising Streptococcus pneumoniae Shift after PCV13 Introduction in Urban Malawi”. Nature Communications 14.1 (2023): 7477.
  6. Im H., et al. “Alterations in Nutrient Availability in the Lungs During Streptococcus pneumoniae-Induced Pneumonia”. Infection and Immunity 93.11 (2025): e0038025.
  7. Paton JC and Trappetti C. “Streptococcus pneumoniae Capsular Polysaccharide”. Microbiology Spectrum 7.2 (2019).
  8. Werren JP., et al. “Carbon Source-Dependent Capsule Thickness Regulation in Streptococcus pneumoniae”. Frontiers in Cellular and Infection Microbiology 13 (2023): 1279119.
  9. Mitchell AM and Mitchell TJ. “Streptococcus pneumoniae: Virulence Factors and Variation”. Clinical Microbiology and Infection 16.5 (2010): 411-418.
  10. Gao S., et al. “Bacterial Capsules: Occurrence, Mechanism, and Function”. NPJ Biofilms and Microbiomes 10.1 (2024): 21.
  11. Sertbas M and Ulgen KO. “Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens”. Frontiers in Cell and Developmental Biology 8 (2020): 566702.
  12. Ohno S, Uematsu S and Kuroda S. “Quantitative Metabolic Fluxes Regulated by Trans-Omic Networks”. Biochemical Journal 479.6 (2022): 787-804.
  13. Toumpe I., et al. “The Dawn of High-Throughput and Genome-Scale Kinetic Modeling: Recent Advances and Future Directions”. ACS Synthetic Biology 14.8 (2025): 2906-2919.
  14. Okuda S., et al. “KEGG Atlas mapping for global analysis of metabolic pathways”. Nucleic Acids Research 36 (2008): W423-W426.
  15. Cho JL and Ling MH. “Adaptation of Whole Cell Kinetic Model Template, UniKin1, to Escherichia coli Whole Cell Kinetic Model, ecoJC20”. EC Microbiology 17.2 (2021): 254-260.
  16. Sharma S., et al. “Antimicrobial Susceptibility Pattern and Serotype Distribution of Streptococcus pneumoniae Isolates From a Hospital-Based Study in Chandigarh, North India”. Cureus 14.1 (2022): e21437.
  17. Yeo KY., et al. “Ab Initio Whole Cell Kinetic Model of Yarrowia lipolytica CLIB122 (yliYKY24)”. Medicon Medical Sciences 8.4 (2025): 13-18.
  18. Kwan ZJ., et al. “Ab Initio Whole Cell Kinetic Model of Stutzerimonas balearica DSM 6083 (pbmKZJ23)”. Acta Scientific Microbiology 7.2 (2024): 28-31.
  19. Maiyappan S., et al. “Four Ab Initio Whole Cell Kinetic Models of Bacillus subtilis 168 (bsuLL25) 6051-HGW (bshSM25), N33 (bsuN33SS25), FUA2231 (bsuGR25)”. Journal of Clinical Immunology & Microbiology 6.2 (2025): 1-6.
  20. Sim BJH, Tan NTF and Ling MHT. “Multilevel Metabolic Modelling Using Ordinary Differential Equations”. Encyclopedia of Bioinformatics and Computational Biology (Second Edition), eds Ranganathan S, Cannataro M, Khan AM (Elsevier, Oxford) (2025): 491-498.
  21. Müller-Hill B. “The lac Operon: A Short History of a Genetic Paradigm (Berlin, Germany)” (1996).
  22. Churchward G, Bremer H and Young R. “Transcription in Bacteria at Different DNA Concentrations”. Journal of Bacteriology 150.2 (1982): 572-581.
  23. Gray WJ and Midgley JE. “The Control of Ribonucleic Acid Synthesis in Bacteria. The Synthesis and Stability of Ribonucleic Acid in Rifampicin-Inhibited Cultures of Escherichia coli”. The Biochemical Journal 122.2 (1971): 161-169.
  24. Kubitschek HE. “Cell Volume Increase in Escherichia coli After Shifts to Richer Media”. Journal of Bacteriology 172.1 (1990): 94-101.
  25. Hu P., et al. “Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins”. PLoS biology 7.4 (2009): e96.
  26. So L-H., et al. “General Properties of Transcriptional Time Series in Escherichia coli”. Nature Genetics 43.6 (2011): 554-560.
  27. Schwanhäusser B., et al. “Corrigendum: Global Quantification of Mammalian Gene Expression Control”. Nature 495.7439 (2013): 126-127.
  28. Maurizi MR. “Proteases and Protein Degradation in Escherichia coli”. Experientia 48.2 (1992): 178-201.
  29. Murthy MV., et al. “UniKin1: A Universal, Non-Species-Specific Whole Cell Kinetic Model”. Acta Scientific Microbiology 3.10 (2020): 04-08.
  30. Bar-Even A., et al. “The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters”. Biochemistry 50.21 (2011): 4402-4410.
  31. Ling MH. “AdvanceSyn Toolkit: An Open Source Suite for Model Development and Analysis in Biological Engineering”. MOJ Proteomics & Bioinformatics 9.4 (2020): 83-86.
  32. Yong B. “The Comparison of Fourth Order Runge-Kutta and Homotopy Analysis Method for Solving Three Basic Epidemic Models”. Journal of Physics: Conference Series 1317 (2019): 012020.
  33. Ling MH. “COPADS IV: Fixed Time-Step ODE Solvers for a System of Equations Implemented as a Set of Python Functions”. Advances in Computer Science: an International Journal 5.3 (2016): 5-11.
  34. Saisudhanbabu T., et al. “Ab Initio Whole Cell Kinetic Model of Limosilactobacillus fermentum EFEL6800 (lfeTS24)”. EC Clinical and Medical Case Reports 8.4 (2025): 01-04.
  35. Arivazhagan M., et al. “Ab Initio Whole Cell Kinetic Model of Bifidobacterium bifidum BGN4 (bbfMA24)”. Acta Scientific Nutritional Health 9.1 (2025): 42-45.
  36. Senthilkumar A., et al. “Ab Initio Whole Cell Kinetic Model of Lactobacillus acidophilus NCFM (lacAS24)”. Journal of Clinical Immunology & Microbiology 6.1 (2025): 1-5.
  37. Wong TB., et al. “Ab Initio Whole Cell Kinetic Models of Escherichia coli BL21 (ebeTBSW25) and MG1655 (ecoMAL25)”. Scholastic Medical Sciences 3.2 (2025): 01-04.
  38. Ambel WB., et al. “UniKin2 - A Universal, Pan-Reactome Kinetic Model”. International Journal of Research in Medical and Clinical Science 3.2 (2025): 77-80.
  39. Bar-Even A., et al. “The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness”. Biochemistry 54.32 (2015): 4969-4977.
  40. Ahn-Horst TA., et al. “An Expanded Whole-Cell Model of E. coli Links Cellular Physiology with Mechanisms of Growth Rate Control”. NPJ Systems Biology and Applications 8.1 (2022): 30.
  41. Thornburg ZR., et al. “Fundamental Behaviors Emerge from Simulations of a Living Minimal Cell”. Cell 185.2 (2022): 345-360.e28.
  42. Bianchi DM., et al. “Toward the Complete Functional Characterization of a Minimal Bacterial Proteome”. The Journal of Physical Chemistry B 126.36 (2022): 6820-6834.
  43. Sun G., et al. “Cross-Evaluation of E. coli’s Operon Structures via a Whole-Cell Model Suggests Alternative Cellular Benefits for Low- Versus High-Expressing Operons”. Cell Systems 15.3 (2024): 227-245.e7.
  44. Choi H and Covert MW. “Whole-cell modeling of E. coli confirms that in vitro tRNA aminoacylation measurements are insufficient to support cell growth and predicts a positive feedback mechanism regulating arginine biosynthesis”. Nucleic Acids Research 51.12 (2023): 5911-5930.
  45. Babonis LS., et al. “Evo-Inspired Engineering of Radical Phenotypes and Emergent Traits”. Integrative And Comparative Biology 65.2 (2025): 198-215.

Citation

Maurice HT Ling., et al. “Ab Initio Whole Cell Kinetic Model of Streptococcus pneumoniae NCTC 7465 (spnLHP26)". Clareus Scientific Medical Sciences 3.1 (2026): 02-07.

Copyright

© 2026 Maurice HT Ling., et al. Licensee Clareus Scientific Publications. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.