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Abstract

     Modern software teams frequently encounter delays in resolving recurring or related issues 
due to fragmented knowledge scattered across JIRA tickets, developer discussions, and GitHub 
pull requests (PRs). To address this challenge, we propose a Retrieval-Augmented Generation 
(RAG) framework that integrates Sentence-Transformers for semantic embeddings with FAISS-
based vector search to deliver context-aware ticket resolution recommendations. The approach 
embeds historical JIRA tickets, user comments, and linked PR metadata to retrieve semantically 
similar past cases, which are then synthesized by a Large Language Model (LLM) into grounded 
and explainable resolution suggestions. The framework contributes a unified pipeline linking 
JIRA and GitHub data, an embedding and FAISS indexing strategy for heterogeneous software 
artifacts, and a resolution generation module guided by retrieved evidence. Experimental evalu-
ation using precision, recall, resolution time reduction, and developer acceptance metrics shows 
that the proposed system significantly improves resolution accuracy, fix quality, and knowl-
edge reuse in modern DevOps environments.

Keywords: Retrieval-Augmented Generation (RAG); Semantic Search; FAISS; Sentence Trans-
formers; CodeBERT; Knowledge Reuse; Automated Ticket Resolution; Large Language Models 
(LLMs); JIRA, GitHub; DevOps Automation; Context-Aware Retrieval; Embedding Indexing; Ex-
plainable AI; Software Maintenance; Developer Productivity; Hybrid Retrieval; Data Drift; Hal-
lucination Mitigation; AI-Augmented Triage

Introduction

    Modern software development teams rely heavily on issue tracking systems such as JIRA and collab-
orative platforms like GitHub to manage feature requests, bug reports, and code changes. However, as 
projects scale, the volume of tickets, developer comments, and associated pull requests (PRs) grows 
exponentially, leading to information overload. Developers often spend significant time searching for 
past resolutions of similar issues, interpreting scattered conversations, and understanding linked 
code changes. Prior research has shown that machine learning techniques can aid in bug classifica-
tion and triage [1], yet such approaches often fall short when handling the semantic variability in re-
al-world bug reports. For instance, a bug describing “UI crash when toggling feature flags in React 19” 
might not be directly matched with an earlier issue phrased as “application freeze due to concurrent 
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rendering,” even though the root cause overlaps, reflecting broader challenges in applying traditional supervised methods to complex, 
evolving enterprise data [2].

    To address this gap, we propose a Retrieval-Augmented Generation (RAG) framework that combines semantic retrieval with con-
text-aware language models for ticket resolution. RAG has been shown to reduce hallucinations and improve factual accuracy by 
grounding model outputs in retrieved evidence [3], making it well-suited for enterprise contexts where precision and reliability are 
critical. Our system leverages Sentence-Transformers to create embeddings of JIRA tickets, user comments, and PR descriptions, FAISS 
(Facebook AI Similarity Search) to perform efficient approximate nearest neighbor (ANN) search across a large corpus of tickets and 
code metadata, and a Large Language Model (LLM) decoder that synthesizes retrieved evidence into grounded, context-rich resolu-
tion suggestions. This approach demonstrates how resolution latency can be reduced, organizational knowledge reuse improved, and 
duplicate engineering effort minimized, while incorporating linked PR information to provide actionable code-change insights that 
guided past fixes.

Contributions

•	 A unified architecture for ingesting and linking JIRA and GitHub data.
•	 An embedding and retrieval strategy tailored for heterogeneous artifacts (tickets, comments, PRs).
•	 A decision pipeline where retrieved evidence guides LLM-generated resolution suggestions.
•	 An evaluation using both IR metrics (Recall@k, MRR) and developer productivity measures (time-to-resolution, acceptance rate).
•	 A case study on recurring issues in a React 19 microservice migration, showcasing practical deployment.

Related Work 
AI in Ticket Classification and Resolution

     The application of artificial intelligence to software maintenance has gained significant attention in recent years. Automated ticket 
classification systems have been developed to triage incoming bug reports and feature requests, often using machine learning models 
trained on historical issue data [1]. Such systems reduce human workload by automatically tagging issues with relevant categories 
or assigning them to appropriate developers. Deep learning approaches, including recurrent neural networks and transformer-based 
architectures, have demonstrated superior accuracy over traditional keyword-based methods by capturing semantic relationships 
between ticket descriptions and resolution categories [2]. Despite these advances, end-to-end automation of ticket resolution remains 
a challenging task, largely due to the fragmented nature of enterprise knowledge distributed across issue trackers, version control 
systems, and communication platforms.

Retrieval-Augmented Generation (RAG) in NLP

    Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm in natural language processing to address the limita-
tions of large language models (LLMs) in generating contextually accurate responses [3]. Unlike traditional generation methods that 
rely solely on pre-trained parameters, RAG incorporates an external knowledge retrieval mechanism, allowing the model to ground 
its outputs in relevant evidence. Studies have shown that RAG reduces hallucinations, improves factual consistency, and adapts more 
effectively to domain-specific queries [4]. This approach has been applied to domains such as open-domain question answering, sci-
entific document analysis, and customer support chatbots, where grounding in authoritative knowledge is critical [5]. For enterprise 
ticket resolution, RAG is particularly promising, as it can integrate dynamic repositories of historical tickets, user comments, and relat-
ed code commits into the resolution process.

FAISS and Vector Similarity Search in Large-Scale Retrieval

   Efficient retrieval is a cornerstone of any RAG-based system. Facebook AI Similarity Search (FAISS) has become a widely adopt-
ed framework for high-dimensional vector similarity search, enabling scalable retrieval of semantically related documents in real 
time [6]. By leveraging approximate nearest neighbor (ANN) algorithms, FAISS can handle millions of embeddings with high recall 
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while maintaining low latency [7]. This capability is crucial in enterprise contexts, where the corpus of bug reports, code commits, 
and documentation can grow rapidly over time. Recent works have combined FAISS with sentence-transformer embeddings to build 
domain-specific retrieval systems that outperform traditional lexical search engines such as Lucene and ElasticSearch [8]. These ad-
vances make FAISS particularly suitable for ticket resolution pipelines, where timely and accurate retrieval of past solutions directly 
impacts developer productivity.

Prior Works Linking JIRA + GitHub Analysis

     Several studies have explored integrating software development artifacts from multiple platforms to improve bug localization and 
resolution. Tools such as BugLocator [9] and DeepLoc [10] have shown that analyzing source code changes alongside issue reports 
can significantly enhance fault localization accuracy. More recent research has extended this integration to combine issue tracker data 
(e.g., JIRA) with version control histories (e.g., GitHub) to identify developer activities, code-review outcomes, and bug-fix patterns 
[11]. However, most of these works rely on supervised learning with static datasets and do not fully leverage semantic retrieval mech-
anisms. By combining JIRA ticket history, user comments, and linked GitHub pull requests into a unified RAG framework, our work 
addresses this gap, providing a dynamic and adaptive approach to ticket resolution grounded in historical evidence.

System Architecture

     Our proposed framework integrates heterogeneous software artifacts into a Retrieval-Augmented Generation (RAG) pipeline for au-
tomated ticket resolution. The architecture is divided into distinct but interdependent modules—data ingestion, embedding, retrieval, 
and generation—allowing modular upgrades and scalability. By leveraging both semantic embeddings and LLM reasoning, the system 
ensures that recommendations are not only contextually relevant but also practically actionable [12].

Data Sources

    The first stage involves structured ingestion of data from multiple development platforms. JIRA is the primary source of issue de-
scriptions and metadata, GitHub contributes pull requests and associated code changes, and developer comments capture implicit 
knowledge such as stack traces and debugging hints. The linking between tickets and PRs ensures a holistic context that goes beyond 
surface-level text matching.

Source Extracted Features Example
JIRA Tickets Title, description, priority, status, resolution “UI crash on feature flag toggle”

User Comments Discussions, error logs, patch hints “Crash due to null pointer at render()”
GitHub PRs Commit messages, diff summaries, review comments “Fix: safeguard concurrent rendering”

Ticket–PR Links Explicit issue keys in PR descriptions “Fixes PROJECT-123 in commit #ab12cd”
Table 1: Example Data Sources and Extracted Fields.

     This integrated dataset forms the backbone of the pipeline, enabling cross-referencing of textual and code-level signals.

Embedding Layer

    The embedding layer converts heterogeneous artifacts—textual (tickets, comments) and semi-structured (PR metadata, commit 
messages)—into dense vector representations. We utilize Sentence-Transformers such as all-MiniLM-L6-v2 and multi-qa-MPNet-base-
dot-v1, optimized for semantic similarity and cross-domain retrieval tasks [13]. For code-specific data, CodeBERT and GraphCode-
BERT embeddings can be integrated to capture programming-language semantics, structural dependencies, and naming conventions.

    To maintain retrieval precision, embeddings are partitioned by artifact type (tickets, comments, PRs), enabling targeted search 
spaces. This fine-grained separation allows the system to merge complementary evidence—e.g., a ticket’s description may surface 
historical incidents, while PR embeddings highlight concrete implementation fixes. Embeddings are normalized and periodically re-
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freshed to capture evolving terminology and codebases.

Retrieval Layer

     All embeddings are indexed using FAISS (Facebook AI Similarity Search), supporting large-scale Approximate Nearest Neighbor 
(ANN) retrieval across millions of vectors [14]. The index type—Flat, IVF, or HNSW—is selected based on corpus size and latency 
requirements.

Workflow

A.	 A new ticket or issue is encoded into an embedding vector.
B.	 FAISS retrieves the top-k semantically closest tickets, PRs, and user comments.
C.	 Retrieved artifacts are re-ranked using cosine similarity and contextual overlap before being passed to the generation layer.

    This approach ensures that suggestions are both semantically aligned and contextually grounded, reducing false positives in 
retrieval-heavy domains.

Generation Layer

The Retrieval-Augmented Generation (RAG) workflow synthesizes the final response by concatenating the top-ranked retrievals into 
a structured prompt for a Large Language Model (LLM). The prompt template incorporates ticket metadata, relevant PR summaries, 
and historical resolutions. The LLM (e.g., GPT-4, Claude, or LLaMA 3 fine-tuned model) produces candidate solutions that include:

•	 Step-by-step resolution plans aligned with retrieved fixes.
•	 Hyperlinks to related PRs or commits for immediate traceability.
•	 Confidence scores or natural-language rationales derived from contextual matching.

     Prompt optimization (e.g., token budgeting, truncation, and instruction tuning) ensures factual grounding and minimizes hallucina-
tion, enabling explainable and auditable recommendations.

Deployment Options

The modular design allows flexible integration within existing DevOps pipelines:

•	 JIRA Integration: An automated triage bot posts context-aware resolution suggestions within ticket comments.
•	 GitHub Action: When new PRs link to issues, historical resolutions are surfaced automatically for cross-reference.
•	 CI/CD Integration: The system detects and classifies recurring test failures, triggering automated RCA (Root Cause Analysis) 

suggestions.

    Each mode supports real-time monitoring, versioned embeddings, and rollback mechanisms to ensure resilience. This adapt-
ability facilitates adoption across organizations of varying maturity, ensuring measurable improvements in MTTR (Mean Time to 
Resolution) and engineering productivity.

Design Trade-offs and Rationale

    The proposed RAG-based system was designed with an emphasis on scalability, explainability, and cost efficiency, driving several 
key architectural decisions. While managed vector databases such as Pinecone, Weaviate, or Milvus offer built-in scalability and dis-
tributed indexing, FAISS was chosen for its on-premise control, GPU acceleration, and customizable ANN indexing options (e.g., Flat, 
IVF, HNSW). This allows tighter integration with existing enterprise security and compliance frameworks, especially when handling 
sensitive ticket and code data.

https://clareus.org/csse


RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse 24

Layer Component Tools / Models Role in Pipeline
Data Sources JIRA Tickets JIRA API Provides issue titles, descriptions, priorities, 

statuses, and resolutions.
User Comments JIRA Discussions, Logs Captures developer discussions, stack traces, 

and hints for debugging.
GitHub PRs GitHub API Supplies commit messages, code diffs, and 

review discussions.
Ticket–PR Links Issue Keys (e.g., PROJ-

ECT-123 in PR text)
Establishes connections between tickets and 
code changes.

Embedding 
Layer

Ticket Descriptions / 
Comments

Sentence-Transformers  
(all-MiniLM, MPNet)

Converts text into semantic dense vectors.

PR Metadata 
(commits, diffs)

Sentence-Transformers / 
CodeBERT

Embeds structured code-related data.

Retrieval Layer Vector Index FAISS (Flat, HNSW, IVF) Performs Approximate Nearest Neighbor 
(ANN) search to find similar tickets/PRs.

Generation 
Layer

Context Synthesis RAG with LLM (e.g., GPT, 
LLaMA)

Combines retrieved context into grounded 
resolution suggestions.

Evidence Linking Retrieved Tickets + PRs Cites past fixes and links to relevant GitHub 
commits.

Deployment Resolution Bot in 
JIRA

JIRA Plugin / API Suggests resolutions in ticket comments.

GitHub Action GitHub CI/CD Suggests fixes in PRs linked to tickets.
CI/CD Integration Jenkins / GitHub Actions / 

GitLab CI
Auto-triage recurring failures during pipe-
lines.

Table 2: System Architecture Components.

    In embedding selection, transformer-based models such as all-MiniLM-L6-v2 and multi-qa-MPNet-base-dot-v1 were preferred over 
heavy fine-tuned models due to their high semantic recall with low latency. Optional inclusion of CodeBERT ensures cross-modal un-
derstanding between textual descriptions and code diffs—critical for software ticket resolution tasks.

     For the generation layer, instead of using a fine-tuned proprietary LLM, the architecture leverages Retrieval-Augmented Generation 
(RAG) to ensure contextual grounding and traceability. This design choice minimizes hallucination risk, reduces dependence on re-
training, and allows modular upgrades (e.g., replacing FAISS or LLM independently).

     Overall, this configuration provides an optimal balance between retrieval precision, computational efficiency, and system transpar-
ency, making it deployable in enterprise-grade environments without sacrificing explainability or maintainability.

Methodology

     The methodology of our proposed RAG-based ticket resolution system follows a structured pipeline, transforming heterogeneous 
software artifacts into actionable knowledge. While the system architecture outlines the core building blocks, the methodology em-
phasizes the step-by-step execution, optimization strategies, and integration points.

Data Preprocessing

     The raw data from JIRA and GitHub requires extensive preprocessing to ensure consistent quality. For tickets, we normalize fields 
by removing boilerplate text (e.g., “Steps to reproduce,” “Expected result”), resolving duplicates, and standardizing timestamps. User 
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comments are cleaned using natural language preprocessing steps such as tokenization, lowercasing, and stopword removal, while 
preserving stack traces and error logs that often hold diagnostic value [15]. For GitHub pull requests (PRs), we extract commit messag-
es, patch diffs, and reviewer discussions. To reduce noise, code diffs are summarized using AST-based (Abstract Syntax Tree) parsers 
to retain only function-level changes rather than line-by-line diffs [16].

Embedding Generation

     The preprocessed artifacts are embedded into dense vector representations using sentence-transformers (e.g., all-MiniLM-L6-v2, 
multi-qa-MPNet-base-dot-v1) [17]. Tickets, comments, and PR metadata are encoded separately to preserve context-specific seman-
tics. For PR diffs, we employ a hybrid strategy: natural language embeddings for commit messages and code-aware embeddings 
(CodeBERT, GraphCodeBERT) for actual code snippets [18]. This hybrid embedding strategy ensures that both natural language rea-
soning and structural code similarities are captured.

Index Construction with FAISS

Once embeddings are generated, they are stored in a FAISS index to enable scalable similarity search across millions of vectors [19]. 
Depending on dataset size and query latency requirements, we experiment with multiple FAISS index types:

•	 Flat (brute-force): Highest accuracy, slower retrieval, suitable for small datasets.
•	 HNSW (Hierarchical Navigable Small World Graph): Balances accuracy and speed, suitable for medium-to-large datasets.
•	 IVF (Inverted File Index): Optimized for very large corpora with trade-offs in recall.

     We empirically evaluate these index structures, selecting HNSW for its balance of speed and recall in organizational-scale datasets.

Query Workflow

For a new incoming ticket, the workflow proceeds as follows:

1.	 The ticket is embedded into the same vector space as historical data.
2.	 The embedding is queried against the FAISS index to retrieve the top-k most similar tickets and PRs.
3.	 The retrieved evidence is concatenated and passed as context to a Large Language Model (LLM), which generates a grounded 

resolution suggestion.
4.	 The LLM output includes candidate resolution steps, references to relevant PRs, and (optionally) a confidence score indicating 

the reliability of the suggestion.

     This retrieval-generation cycle forms the core of the system’s intelligence, ensuring that answers are both semantically relevant and 
context-rich [20].

Integration with Developer Workflows

The final step involves embedding the system seamlessly into existing developer workflows. We provide two main integration options:

•	 JIRA Resolution Bot: The system posts a suggested resolution directly in the ticket comments, allowing developers to accept, 
modify, or reject it.

•	 GitHub Action Integration: For PR-linked issues, the system provides inline comments with past relevant fixes and code-change 
patterns.

     By positioning the AI assistant within the same tools developers already use, we minimize context switching and increase adoption 
[21].
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Comparative Analysis of FAISS Index Structures

     One critical design decision in our methodology involves selecting the appropriate FAISS index type. The choice depends on dataset 
size, desired accuracy, and latency requirements. Table 1 summarizes the trade-offs among the most commonly used FAISS indices.

Index Type Accuracy Query Speed Memory 
Usage

Best Use Case

Flat (Brute Force) ★★★★★ 
(Exact match)

Slow (linear scan) High Small datasets (<100k vectors), 
experiments

HNSW (Hierarchical Naviga-
ble Small World)

★★★★☆ 
(Near-exact)

Fast (logarithmic 
search)

Moderate Medium-to-large datasets 
(100k–10M vectors)

IVF (Inverted File Index) ★★★☆☆ 
(Approximate)

Very fast (sublin-
ear)

Low Very large datasets (>10M vec-
tors), web-scale retrieval

Table 3: Trade-offs between FAISS index structures.

    In practice, we found HNSW to provide the best balance between latency and accuracy, particularly for enterprise-scale datasets 
such as millions of JIRA tickets and PRs. The Flat index ensures perfect recall but is impractical at scale, while IVF scales efficiently but 
sacrifices accuracy in retrieving highly similar tickets.

    By empirically comparing index types on a real-world dataset of ~1.2M tickets and PRs, we observed that HNSW reduced average 
query latency by 73% compared to Flat, with only a 2% drop in recall. This balance makes it suitable for integration into CI/CD work-
flows where both accuracy and responsiveness are critical [19].

Case Study: Ticket Resolution with React 19 Migration

    To demonstrate the practical application of the proposed system, we consider a real-world case study involving the migration of 
a large-scale web application from React 18 to React 19. The migration introduced several recurring issues, particularly within the 
microservices architecture where multiple teams maintained interconnected components. A recurring challenge was related to dep-
recated lifecycle methods and state management inconsistencies during the migration, which resulted in multiple JIRA tickets being 
raised across different services. These tickets often included developer comments, stack traces, and references to GitHub pull requests 
(PRs) that contained partial fixes or experimental workarounds [23].

    Using the Retrieval-Augmented Generation (RAG) pipeline, the system embedded historical tickets and PRs into a vector database 
indexed with FAISS. When a new migration-related issue was filed, the pipeline automatically transformed the ticket description into 
an embedding and searched for semantically similar records. In this scenario, the system successfully retrieved past tickets related to 
useEffect dependency changes, state batching improvements, and modifications in React’s concurrent rendering model [24]. Addition-
ally, PRs that contained refactoring strategies, such as replacing deprecated APIs with new concurrent-friendly hooks, were surfaced 
as context.

     The candidate resolution was then generated by the large language model (LLM), which synthesized patterns from retrieved tickets 
and PR diffs. For example, when a new ticket described “UI freezes due to concurrent rendering mismatch,” the system suggested a fix 
pattern based on prior migrations—rewriting affected components with useTransition to manage deferred updates. The generated 
suggestion was concrete enough to guide developers toward a solution while still requiring their judgment for context-specific adjust-
ments [25].

     A feedback loop was incorporated into the workflow, allowing developers to upvote or refine the candidate resolutions. This input 
not only improved the system’s relevance ranking over time but also ensured trust and adoption among engineering teams. Over mul-
tiple iterations, developers reported reduced time in searching historical tickets manually and faster convergence toward correct fixes. 
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This validated the hypothesis that AI-assisted retrieval and suggestion pipelines can significantly accelerate the resolution of recurring 
migration issues [26].

     The evaluation of our RAG-based ticket resolution framework focuses on three complementary perspectives: retrieval quality, gen-
eration performance, and business impact. These perspectives provide both technical and organizational validation for the system.

Retrieval Metrics

We first assess retrieval effectiveness using Recall@k and Mean Reciprocal Rank (MRR). Recall@k measures the fraction of relevant 
past tickets/PRs retrieved within the top k results, while MRR reflects how highly relevant items are ranked on average. In our ex-
periments with approximately 15,000 historical JIRA tickets and 6,500 GitHub PRs collected from a large-scale React 19 migration 
project, the FAISS HNSW index achieved:

•	 Recall@5: 82%.
•	 Recall@10: 91%.
•	 MRR: 0.78.

     This indicates that relevant prior resolutions were usually retrieved within the first five results, confirming the efficiency of FAISS 
in handling multi-source embeddings [27].

Generation Metrics

The output of the RAG pipeline was evaluated using BLEU, ROUGE-L, and a factual consistency score computed against ground-truth 
developer resolutions. On a test set of 500 unseen JIRA issues:

•	 BLEU: 0.47.
•	 ROUGE-L: 0.62.
•	 Factual Consistency: 84%.

    The factual grounding score, measured using attribution checks against retrieved documents [28], highlights that the LLM was large-
ly faithful to retrieved content. This minimized hallucinations, a common challenge in generative AI systems [29].

Business Metrics

From an organizational standpoint, the key benefits were captured through mean resolution time reduction, human acceptance 
rate, and developer productivity uplift. Across three agile teams adopting the RAG system:

•	 Average resolution time reduced from 18.5 hours to 10.2 hours (45% improvement).
•	 Human acceptance rate (i.e., developers directly adopting or lightly editing AI-suggested resolutions) was 68%.
•	 Developer surveys indicated a 32% self-reported productivity uplift, primarily due to reduced repetitive triaging work.

Experimental Dataset 
The dataset comprised

Data Source Quantity Notes
JIRA Tickets 15,000 Includes titles, descriptions, comments
GitHub PRs 6,500 Includes commit messages, diffs, review comments

Linked Tickets–PRs 3,200 Explicit mappings via issue keys

    These results collectively demonstrate that the proposed RAG framework not only performs competitively on standard retrieval/
generation benchmarks but also yields tangible business value when integrated into software engineering workflows.
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Challenge Description / Impact Mitigation Strategy
Hallucination & Factual Inconsistency LLM occasionally generates re-

sponses not grounded in retrieved 
evidence, leading to unreliable or 
misleading suggestions.

•	Retrieval grounding through evi-
dence-weighted decoding

•	Post-generation factual verification

Retrieval confidence scoring and entailment 
checks

Historical Data Bias Legacy tickets and PRs may contain 
outdated or low-quality fixes, propa-
gating technical debt or suboptimal 
patterns.

•	Data provenance tracking and quality filter-
ing

•	Temporal relevance weighting

Human-in-the-loop curation of training and 
retrieval datasets

Dataset Drift (Framework Evolution) Changes in frameworks (e.g., React 
18

→ React 19) reduce relevance of old-
er examples and embeddings.

•	Periodic re-indexing and embedding refresh

•	Time-aware similarity search

•	Continuous fine-tuning using recent artifacts

Analysis, Limitations, and Engineering Implications

    Our findings confirm that a Retrieval-Augmented Generation (RAG) framework can significantly accelerate ticket triage and 
enhance the reuse of organizational knowledge. However, several challenges must be addressed before achieving reliable, produc-
tion-scale adoption. The first concerns factual reliability—while factual grounding achieved approximately 84%, occasional hallu-
cinations were observed when the LLM extrapolated beyond retrieved evidence. This limitation aligns with broader observations in 
generative AI research on the tension between fluency and factuality [30, 31]. Future iterations could incorporate retrieval-verifica-
tion layers or cross-encoder re-ranking to ensure that generated recommendations remain strictly supported by retrieved artifacts.

     A second limitation involves historical bias and data quality within JIRA and GitHub sources. If earlier resolutions reflected sub-
optimal engineering practices or incomplete fixes, the system risks reinforcing these patterns. Similar concerns regarding bias prop-
agation and fairness have been documented across machine learning systems [32]. Mitigation strategies include temporal filtering, 
confidence weighting, and developer feedback loops that allow human review to gradually refine model reliability over time. Dataset 
drift also poses a significant technical challenge. As frameworks evolve (e.g., React 18 → React 19 or new testing libraries), the seman-
tic landscape of issues shifts, degrading retrieval precision. Regular re-embedding cycles, incremental FAISS index refreshes, and 
continual fine-tuning of sentence-transformer models are essential for maintaining relevance and stability [33].

     From a deployment perspective, the case study revealed that developers placed greater trust in AI-generated resolutions when trans-
parent evidence—such as retrieved PR links and rationale—was displayed alongside suggestions. This corroborates prior research 
indicating that explainability and interpretability directly correlate with user adoption in human-AI collaboration [34]. However, 
real-world deployment introduces operational costs: indexing tens of thousands of artifacts in FAISS requires optimized HNSW or IVF 
configurations, and repeated LLM inference adds compute and latency overhead. Emerging solutions, including hybrid retrieval 
pipelines (dense + sparse), prompt caching, and edge inference using quantized models, may offer a balance between performance 
and cost-efficiency [35]. Ultimately, while RAG-based systems show strong potential in automating software maintenance and ticket 
resolution, their long-term success depends on mitigating hallucination risk, ensuring model adaptability to evolving technologies, 
and embedding AI recommendations seamlessly into the developer workflow with transparency and scalability in mind.
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Explainability and Developer Trust Developers hesitate to adopt AI rec-
ommendations without transparent 
supporting evidence.

•	Evidence-linked outputs (PRs, diffs, tickets)

•	Interactive provenance visualization

•	Explainable retrieval highlighting relevant 
context

Scalability and Cost Overhead Indexing large-scale repositories 
and frequent LLM inference increase 
compute and operational costs.

•	Hybrid retrieval (FAISS + sparse search)

•	Query batching and response caching

•	Lightweight local LLMs and modular archi-
tecture

Knowledge Obsolescence Rapid evolution in tooling and prac-
tices makes older embeddings less 
useful.

•	Adaptive learning pipelines with online 
embedding updates

•	Model distillation for new domains

•	Incremental fine-tuning driven by recent 
commits

Table 4: Key Challenges and Mitigation Strategies in RAG-Based Ticket Resolution.

Conclusion and Future Work

  This paper presented a Retrieval-Augmented Generation (RAG) framework that unifies JIRA tickets, developer discussions, 
and GitHub pull requests into an integrated pipeline for AI-assisted ticket triage and resolution generation. By leveraging sen-
tence-transformer embeddings for semantic representation, FAISS-based Approximate Nearest Neighbor (ANN) search for large-
scale retrieval, and Large Language Model (LLM)-driven synthesis for contextual reasoning, the proposed system demonstrates how 
retrieval and generation can be effectively fused to emulate human-like diagnostic and decision-making behavior. Our case study on 
a React 19 microservice migration illustrated the system’s capability to recall semantically related historical fixes and produce ac-
tionable, evidence-grounded recommendations, while empirical evaluation confirmed measurable improvements in retrieval pre-
cision, recall@k, and time-to-resolution metrics. The results collectively validate the promise of AI-augmented DevOps workflows 
to mitigate cognitive overload, accelerate triage, and enhance organizational knowledge reuse across software delivery lifecycles.

    Looking forward, several technically promising extensions arise. Future work will aim to improve factual grounding and result 
traceability by incorporating a retrieval verification layer and reinforcement learning with human feedback (RLHF) to penalize 
hallucinations and reward accurate reasoning. To support enterprise-scale workloads spanning millions of artifacts, we plan to inves-
tigate hybrid retrieval architectures that combine dense FAISS indexing with sparse retrievers such as BM25 or ColBERT for pre-
cision-recall tradeoff optimization. Another frontier lies in continual and adaptive learning, where embeddings and model weights 
evolve dynamically as new frameworks (e.g., React 20 or Next.js 15) and coding patterns emerge, thereby preventing semantic drift 
and knowledge staleness. In addition, future iterations may integrate graph-based embeddings to better represent ticket-PR-devel-
oper relationships and improve contextual linking. Finally, practical and ethical considerations—such as auditability, explainability, 
data privacy, and inference cost optimization—must remain integral to ensure the system’s trustworthiness and sustainable deploy-
ment in real-world CI/CD ecosystems.

Key Takeaways

    This study demonstrates how Retrieval-Augmented Generation (RAG) can transform traditional ticket resolution by combining 
semantic retrieval with AI-driven reasoning. Using embeddings, FAISS, and large language models, the framework bridges the gap 
between unstructured organizational knowledge and automated resolution workflows. The approach not only accelerates developer 
decision-making but also establishes a foundation for self-improving, explainable, and scalable DevOps automation. As future sys-
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tems evolve toward autonomous software maintenance, integrating retrieval intelligence with adaptive LLMs represents a signifi-
cant step toward self-healing and context-aware engineering environments.
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