Clareus Scientific Science and Engineering

Volume 2 Issue 10 December 2025
ISSN: 3065-1182

f"x' Clareus
w Scientific

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented

Citation: Mohammad Bagar.
“RAG4Tickets: Al-Powered Tick-
et Resolution via Retrieval-Aug-
mented Generation on JIRA and
GitHub Data". Clareus Scientific
Science and Engineering 2.10
(2025): 20-31.

Article Type: Research Article
Received: October 15, 2025
Published: December 02, 2025

Copyright: © 2025 Mohammad
Bagqar. Licensee Clareus Scientif-
ic Publications. This article is an
open access article distributed
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license.

Generation on JIRA and GitHub Data

Mohammad Baqar*
Cisco Systems Inc, CA, USA

*Corresponding Author: Mohammad Baqar, Cisco Systems Inc, CA, USA.

Abstract

Modern software teams frequently encounter delays in resolving recurring or related issues
due to fragmented knowledge scattered across JIRA tickets, developer discussions, and GitHub
pull requests (PRs). To address this challenge, we propose a Retrieval-Augmented Generation
(RAG) framework that integrates Sentence-Transformers for semantic embeddings with FAISS-
based vector search to deliver context-aware ticket resolution recommendations. The approach
embeds historical JIRA tickets, user comments, and linked PR metadata to retrieve semantically
similar past cases, which are then synthesized by a Large Language Model (LLM) into grounded
and explainable resolution suggestions. The framework contributes a unified pipeline linking
JIRA and GitHub data, an embedding and FAISS indexing strategy for heterogeneous software
artifacts, and a resolution generation module guided by retrieved evidence. Experimental evalu-
ation using precision, recall, resolution time reduction, and developer acceptance metrics shows
that the proposed system significantly improves resolution accuracy, fix quality, and knowl-

edge reuse in modern DevOps environments.

Keywords: Retrieval-Augmented Generation (RAG); Semantic Search; FAISS; Sentence Trans-
formers; CodeBERT; Knowledge Reuse; Automated Ticket Resolution; Large Language Models
(LLMs); JIRA, GitHub; DevOps Automation; Context-Aware Retrieval; Embedding Indexing; Ex-
plainable Al; Software Maintenance; Developer Productivity; Hybrid Retrieval; Data Drift; Hal-

lucination Mitigation; Al-Augmented Triage

Introduction

Modern software development teams rely heavily on issue tracking systems such as JIRA and collab-
orative platforms like GitHub to manage feature requests, bug reports, and code changes. However, as
projects scale, the volume of tickets, developer comments, and associated pull requests (PRs) grows
exponentially, leading to information overload. Developers often spend significant time searching for
past resolutions of similar issues, interpreting scattered conversations, and understanding linked
code changes. Prior research has shown that machine learning techniques can aid in bug classifica-
tion and triage [1], yet such approaches often fall short when handling the semantic variability in re-
al-world bug reports. For instance, a bug describing “Ul crash when toggling feature flags in React 19”

might not be directly matched with an earlier issue phrased as “application freeze due to concurrent

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://creativecommons.org/licenses/by/4.0/
https://clareus.org/csse
https://clareus.org/

https://clareus.org/csse 21

rendering,” even though the root cause overlaps, reflecting broader challenges in applying traditional supervised methods to complex,

evolving enterprise data [2].

To address this gap, we propose a Retrieval-Augmented Generation (RAG) framework that combines semantic retrieval with con-
text-aware language models for ticket resolution. RAG has been shown to reduce hallucinations and improve factual accuracy by
grounding model outputs in retrieved evidence [3], making it well-suited for enterprise contexts where precision and reliability are
critical. Our system leverages Sentence-Transformers to create embeddings of JIRA tickets, user comments, and PR descriptions, FAISS
(Facebook Al Similarity Search) to perform efficient approximate nearest neighbor (ANN) search across a large corpus of tickets and
code metadata, and a Large Language Model (LLM) decoder that synthesizes retrieved evidence into grounded, context-rich resolu-
tion suggestions. This approach demonstrates how resolution latency can be reduced, organizational knowledge reuse improved, and
duplicate engineering effort minimized, while incorporating linked PR information to provide actionable code-change insights that
guided past fixes.

Contributions

e Aunified architecture for ingesting and linking JIRA and GitHub data.

e An embedding and retrieval strategy tailored for heterogeneous artifacts (tickets, comments, PRs).

e A decision pipeline where retrieved evidence guides LLM-generated resolution suggestions.

e Anevaluation using both IR metrics (Recall@k, MRR) and developer productivity measures (time-to-resolution, acceptance rate).

e A case study on recurring issues in a React 19 microservice migration, showcasing practical deployment.

Related Work
Al in Ticket Classification and Resolution

The application of artificial intelligence to software maintenance has gained significant attention in recent years. Automated ticket
classification systems have been developed to triage incoming bug reports and feature requests, often using machine learning models
trained on historical issue data [1]. Such systems reduce human workload by automatically tagging issues with relevant categories
or assigning them to appropriate developers. Deep learning approaches, including recurrent neural networks and transformer-based
architectures, have demonstrated superior accuracy over traditional keyword-based methods by capturing semantic relationships
between ticket descriptions and resolution categories [2]. Despite these advances, end-to-end automation of ticket resolution remains
a challenging task, largely due to the fragmented nature of enterprise knowledge distributed across issue trackers, version control

systems, and communication platforms.
Retrieval-Augmented Generation (RAG) in NLP

Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm in natural language processing to address the limita-
tions of large language models (LLMs) in generating contextually accurate responses [3]. Unlike traditional generation methods that
rely solely on pre-trained parameters, RAG incorporates an external knowledge retrieval mechanism, allowing the model to ground
its outputs in relevant evidence. Studies have shown that RAG reduces hallucinations, improves factual consistency, and adapts more
effectively to domain-specific queries [4]. This approach has been applied to domains such as open-domain question answering, sci-
entific document analysis, and customer support chatbots, where grounding in authoritative knowledge is critical [5]. For enterprise
ticket resolution, RAG is particularly promising, as it can integrate dynamic repositories of historical tickets, user comments, and relat-

ed code commits into the resolution process.
FAISS and Vector Similarity Search in Large-Scale Retrieval

Efficient retrieval is a cornerstone of any RAG-based system. Facebook Al Similarity Search (FAISS) has become a widely adopt-
ed framework for high-dimensional vector similarity search, enabling scalable retrieval of semantically related documents in real

time [6]. By leveraging approximate nearest neighbor (ANN) algorithms, FAISS can handle millions of embeddings with high recall

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 22

while maintaining low latency [7]. This capability is crucial in enterprise contexts, where the corpus of bug reports, code commits,
and documentation can grow rapidly over time. Recent works have combined FAISS with sentence-transformer embeddings to build
domain-specific retrieval systems that outperform traditional lexical search engines such as Lucene and ElasticSearch [8]. These ad-
vances make FAISS particularly suitable for ticket resolution pipelines, where timely and accurate retrieval of past solutions directly

impacts developer productivity.
Prior Works Linking JIRA + GitHub Analysis

Several studies have explored integrating software development artifacts from multiple platforms to improve bug localization and
resolution. Tools such as BugLocator [9] and DeepLoc [10] have shown that analyzing source code changes alongside issue reports
can significantly enhance fault localization accuracy. More recent research has extended this integration to combine issue tracker data
(e.g., JIRA) with version control histories (e.g., GitHub) to identify developer activities, code-review outcomes, and bug-fix patterns
[11]. However, most of these works rely on supervised learning with static datasets and do not fully leverage semantic retrieval mech-
anisms. By combining JIRA ticket history, user comments, and linked GitHub pull requests into a unified RAG framework, our work

addresses this gap, providing a dynamic and adaptive approach to ticket resolution grounded in historical evidence.
System Architecture

Our proposed framework integrates heterogeneous software artifacts into a Retrieval-Augmented Generation (RAG) pipeline for au-
tomated ticket resolution. The architecture is divided into distinct but interdependent modules—data ingestion, embedding, retrieval,
and generation—allowing modular upgrades and scalability. By leveraging both semantic embeddings and LLM reasoning, the system

ensures that recommendations are not only contextually relevant but also practically actionable [12].
Data Sources

The first stage involves structured ingestion of data from multiple development platforms. JIRA is the primary source of issue de-
scriptions and metadata, GitHub contributes pull requests and associated code changes, and developer comments capture implicit
knowledge such as stack traces and debugging hints. The linking between tickets and PRs ensures a holistic context that goes beyond

surface-level text matching.

Source Extracted Features Example
JIRA Tickets Title, description, priority, status, resolution “Ul crash on feature flag toggle”
User Comments | Discussions, errorlogs, patch hints “Crash due to null pointer at render()”
GitHub PRs Commit messages, diff summaries, review comments | “Fix: safeguard concurrent rendering”
Ticket-PR Links | Explicitissue keys in PR descriptions “Fixes PROJECT-123 in commit #ab12cd”

Table 1: Example Data Sources and Extracted Fields.
This integrated dataset forms the backbone of the pipeline, enabling cross-referencing of textual and code-level signals.
Embedding Layer

The embedding layer converts heterogeneous artifacts—textual (tickets, comments) and semi-structured (PR metadata, commit
messages)—into dense vector representations. We utilize Sentence-Transformers such as all-MiniLM-L6-v2 and multi-qa-MPNet-base-
dot-v1, optimized for semantic similarity and cross-domain retrieval tasks [13]. For code-specific data, CodeBERT and GraphCode-

BERT embeddings can be integrated to capture programming-language semantics, structural dependencies, and naming conventions.

To maintain retrieval precision, embeddings are partitioned by artifact type (tickets, comments, PRs), enabling targeted search
spaces. This fine-grained separation allows the system to merge complementary evidence—e.g., a ticket’s description may surface

historical incidents, while PR embeddings highlight concrete implementation fixes. Embeddings are normalized and periodically re-

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 23

freshed to capture evolving terminology and codebases.
Retrieval Layer

All embeddings are indexed using FAISS (Facebook Al Similarity Search), supporting large-scale Approximate Nearest Neighbor
(ANN) retrieval across millions of vectors [14]. The index type—Flat, IVF, or HNSW—is selected based on corpus size and latency
requirements.

Workflow

A. Anew ticket or issue is encoded into an embedding vector.
B. FAISS retrieves the top-k semantically closest tickets, PRs, and user comments.

C. Retrieved artifacts are re-ranked using cosine similarity and contextual overlap before being passed to the generation layer.

This approach ensures that suggestions are both semantically aligned and contextually grounded, reducing false positives in
retrieval-heavy domains.

Generation Layer

The Retrieval-Augmented Generation (RAG) workflow synthesizes the final response by concatenating the top-ranked retrievals into
a structured prompt for a Large Language Model (LLM). The prompt template incorporates ticket metadata, relevant PR summaries,
and historical resolutions. The LLM (e.g., GPT-4, Claude, or LLaMA 3 fine-tuned model) produces candidate solutions that include:

e Step-by-step resolution plans aligned with retrieved fixes.
e Hyperlinks to related PRs or commits for immediate traceability.

o Confidence scores or natural-language rationales derived from contextual matching.

Prompt optimization (e.g., token budgeting, truncation, and instruction tuning) ensures factual grounding and minimizes hallucina-
tion, enabling explainable and auditable recommendations.

Deployment Options
The modular design allows flexible integration within existing DevOps pipelines:

o JIRA Integration: An automated triage bot posts context-aware resolution suggestions within ticket comments.
e GitHub Action: When new PRs link to issues, historical resolutions are surfaced automatically for cross-reference.
e (CI/CD Integration: The system detects and classifies recurring test failures, triggering automated RCA (Root Cause Analysis)

suggestions.

Each mode supports real-time monitoring, versioned embeddings, and rollback mechanisms to ensure resilience. This adapt-
ability facilitates adoption across organizations of varying maturity, ensuring measurable improvements in MTTR (Mean Time to
Resolution) and engineering productivity.

Design Trade-offs and Rationale

The proposed RAG-based system was designed with an emphasis on scalability, explainability, and cost efficiency, driving several
key architectural decisions. While managed vector databases such as Pinecone, Weaviate, or Milvus offer built-in scalability and dis-
tributed indexing, FAISS was chosen for its on-premise control, GPU acceleration, and customizable ANN indexing options (e.g., Flat,
IVE, HNSW). This allows tighter integration with existing enterprise security and compliance frameworks, especially when handling
sensitive ticket and code data.

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse

Layer

Component

Tools / Models

Role in Pipeline

Data Sources

JIRA Tickets

JIRA API

Provides issue titles, descriptions, priorities,

statuses, and resolutions.

User Comments

JIRA Discussions, Logs

Captures developer discussions, stack traces,

and hints for debugging.

GitHub PRs

GitHub API

Supplies commit messages, code diffs, and

review discussions.

Ticket-PR Links

Issue Keys (e.g., PROJ-
ECT-123in PR text)

Establishes connections between tickets and

code changes.

Embedding
Layer

Ticket Descriptions / | Sentence-Transformers Converts text into semantic dense vectors.
Comments (all-MiniLM, MPNet)
PR Metadata Sentence-Transformers / Embeds structured code-related data.

(commits, diffs)

CodeBERT

Retrieval Layer

Vector Index

FAISS (Flat, HNSW, IVF)

Performs Approximate Nearest Neighbor
(ANN) search to find similar tickets/PRs.

GitLab CI

Generation Context Synthesis RAG with LLM (e.g., GPT, Combines retrieved context into grounded
Layer LLaMA) resolution suggestions.
Evidence Linking Retrieved Tickets + PRs Cites past fixes and links to relevant GitHub
commits.

Deployment | Resolution Botin JIRA Plugin / API Suggests resolutions in ticket comments.
JIRA
GitHub Action GitHub CI/CD Suggests fixes in PRs linked to tickets.
CI/CD Integration Jenkins / GitHub Actions / | Auto-triage recurring failures during pipe-

lines.

Table 2: System Architecture Components.

24

In embedding selection, transformer-based models such as all-MiniLM-L6-v2 and multi-qa-MPNet-base-dot-v1 were preferred over
heavy fine-tuned models due to their high semantic recall with low latency. Optional inclusion of CodeBERT ensures cross-modal un-

derstanding between textual descriptions and code diffs—critical for software ticket resolution tasks.

For the generation layer, instead of using a fine-tuned proprietary LLM, the architecture leverages Retrieval-Augmented Generation
(RAG) to ensure contextual grounding and traceability. This design choice minimizes hallucination risk, reduces dependence on re-

training, and allows modular upgrades (e.g., replacing FAISS or LLM independently).

Overall, this configuration provides an optimal balance between retrieval precision, computational efficiency, and system transpar-

ency, making it deployable in enterprise-grade environments without sacrificing explainability or maintainability.
Methodology

The methodology of our proposed RAG-based ticket resolution system follows a structured pipeline, transforming heterogeneous
software artifacts into actionable knowledge. While the system architecture outlines the core building blocks, the methodology em-

phasizes the step-by-step execution, optimization strategies, and integration points.
Data Preprocessing

The raw data from JIRA and GitHub requires extensive preprocessing to ensure consistent quality. For tickets, we normalize fields

» o«

by removing boilerplate text (e.g., “Steps to reproduce,” “Expected result”), resolving duplicates, and standardizing timestamps. User

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 25

comments are cleaned using natural language preprocessing steps such as tokenization, lowercasing, and stopword removal, while
preserving stack traces and error logs that often hold diagnostic value [15]. For GitHub pull requests (PRs), we extract commit messag-
es, patch diffs, and reviewer discussions. To reduce noise, code diffs are summarized using AST-based (Abstract Syntax Tree) parsers

to retain only function-level changes rather than line-by-line diffs [16].
Embedding Generation

The preprocessed artifacts are embedded into dense vector representations using sentence-transformers (e.g., all-MiniLM-L6-v2,
multi-qa-MPNet-base-dot-v1) [17]. Tickets, comments, and PR metadata are encoded separately to preserve context-specific seman-
tics. For PR diffs, we employ a hybrid strategy: natural language embeddings for commit messages and code-aware embeddings
(CodeBERT, GraphCodeBERT) for actual code snippets [18]. This hybrid embedding strategy ensures that both natural language rea-

soning and structural code similarities are captured.
Index Construction with FAISS

Once embeddings are generated, they are stored in a FAISS index to enable scalable similarity search across millions of vectors [19].

Depending on dataset size and query latency requirements, we experiment with multiple FAISS index types:

o Flat (brute-force): Highest accuracy, slower retrieval, suitable for small datasets.
e HNSW (Hierarchical Navigable Small World Graph): Balances accuracy and speed, suitable for medium-to-large datasets.
o [VF (Inverted File Index): Optimized for very large corpora with trade-offs in recall.

We empirically evaluate these index structures, selecting HNSW for its balance of speed and recall in organizational-scale datasets.
Query Workflow
For a new incoming ticket, the workflow proceeds as follows:

1. The ticket is embedded into the same vector space as historical data.
The embedding is queried against the FAISS index to retrieve the top-k most similar tickets and PRs.
The retrieved evidence is concatenated and passed as context to a Large Language Model (LLM), which generates a grounded
resolution suggestion.

4. The LLM output includes candidate resolution steps, references to relevant PRs, and (optionally) a confidence score indicating
the reliability of the suggestion.

This retrieval-generation cycle forms the core of the system’s intelligence, ensuring that answers are both semantically relevant and
context-rich [20].

Integration with Developer Workflows
The final step involves embedding the system seamlessly into existing developer workflows. We provide two main integration options:

o JIRA Resolution Bot: The system posts a suggested resolution directly in the ticket comments, allowing developers to accept,
modify, or reject it.

e GitHub Action Integration: For PR-linked issues, the system provides inline comments with past relevant fixes and code-change
patterns.

By positioning the Al assistant within the same tools developers already use, we minimize context switching and increase adoption
[21].

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 26

Comparative Analysis of FAISS Index Structures

One critical design decision in our methodology involves selecting the appropriate FAISS index type. The choice depends on dataset

size, desired accuracy, and latency requirements. Table 1 summarizes the trade-offs among the most commonly used FAISS indices.

Index Type Accuracy Query Speed Memory | Best Use Case
Usage

Flat (Brute Force) % %k k ok Slow (linear scan) High Small datasets (<100k vectors),
(Exact match) experiments

HNSW (Hierarchical Naviga- %k ko Fast (logarithmic Moderate | Medium-to-large datasets

ble Small World) (Near-exact) | search) (100k-10M vectors)

IVF (Inverted File Index) 2.0, 8. 8287 Very fast (sublin- Low Very large datasets (>10M vec-
(Approximate) | ear) tors), web-scale retrieval

Table 3: Trade-offs between FAISS index structures.

In practice, we found HNSW to provide the best balance between latency and accuracy, particularly for enterprise-scale datasets
such as millions of JIRA tickets and PRs. The Flat index ensures perfect recall but is impractical at scale, while IVF scales efficiently but

sacrifices accuracy in retrieving highly similar tickets.

By empirically comparing index types on a real-world dataset of ~1.2M tickets and PRs, we observed that HNSW reduced average
query latency by 73% compared to Flat, with only a 2% drop in recall. This balance makes it suitable for integration into CI/CD work-

flows where both accuracy and responsiveness are critical [19].
Case Study: Ticket Resolution with React 19 Migration

To demonstrate the practical application of the proposed system, we consider a real-world case study involving the migration of
a large-scale web application from React 18 to React 19. The migration introduced several recurring issues, particularly within the
microservices architecture where multiple teams maintained interconnected components. A recurring challenge was related to dep-
recated lifecycle methods and state management inconsistencies during the migration, which resulted in multiple JIRA tickets being
raised across different services. These tickets often included developer comments, stack traces, and references to GitHub pull requests

(PRs) that contained partial fixes or experimental workarounds [23].

Using the Retrieval-Augmented Generation (RAG) pipeline, the system embedded historical tickets and PRs into a vector database
indexed with FAISS. When a new migration-related issue was filed, the pipeline automatically transformed the ticket description into
an embedding and searched for semantically similar records. In this scenario, the system successfully retrieved past tickets related to
useEffect dependency changes, state batching improvements, and modifications in React’s concurrent rendering model [24]. Addition-
ally, PRs that contained refactoring strategies, such as replacing deprecated APIs with new concurrent-friendly hooks, were surfaced

as context.

The candidate resolution was then generated by the large language model (LLM), which synthesized patterns from retrieved tickets
and PR diffs. For example, when a new ticket described “Ul freezes due to concurrent rendering mismatch,” the system suggested a fix
pattern based on prior migrations—rewriting affected components with useTransition to manage deferred updates. The generated
suggestion was concrete enough to guide developers toward a solution while still requiring their judgment for context-specific adjust-
ments [25].

A feedback loop was incorporated into the workflow, allowing developers to upvote or refine the candidate resolutions. This input
not only improved the system’s relevance ranking over time but also ensured trust and adoption among engineering teams. Over mul-

tiple iterations, developers reported reduced time in searching historical tickets manually and faster convergence toward correct fixes.

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 27

This validated the hypothesis that Al-assisted retrieval and suggestion pipelines can significantly accelerate the resolution of recurring

migration issues [26].

The evaluation of our RAG-based ticket resolution framework focuses on three complementary perspectives: retrieval quality, gen-

eration performance, and business impact. These perspectives provide both technical and organizational validation for the system.
Retrieval Metrics

We first assess retrieval effectiveness using Recall@k and Mean Reciprocal Rank (MRR). Recall@k measures the fraction of relevant
past tickets/PRs retrieved within the top k results, while MRR reflects how highly relevant items are ranked on average. In our ex-
periments with approximately 15,000 historical JIRA tickets and 6,500 GitHub PRs collected from a large-scale React 19 migration
project, the FAISS HNSW index achieved:

e Recall@5: 82%.
e Recall@10: 91%.
e MRR: 0.78.

This indicates that relevant prior resolutions were usually retrieved within the first five results, confirming the efficiency of FAISS

in handling multi-source embeddings [27].
Generation Metrics

The output of the RAG pipeline was evaluated using BLEU, ROUGE-L, and a factual consistency score computed against ground-truth

developer resolutions. On a test set of 500 unseen JIRA issues:

e BLEU: 0.47.
e ROUGE-L: 0.62.

e Factual Consistency: 84%.

The factual grounding score, measured using attribution checks against retrieved documents [28], highlights that the LLM was large-

ly faithful to retrieved content. This minimized hallucinations, a common challenge in generative Al systems [29].
Business Metrics

From an organizational standpoint, the key benefits were captured through mean resolution time reduction, human acceptance
rate, and developer productivity uplift. Across three agile teams adopting the RAG system:

e Average resolution time reduced from 18.5 hours to 10.2 hours (45% improvement).
e Human acceptance rate (i.e., developers directly adopting or lightly editing Al-suggested resolutions) was 68%.

e Developer surveys indicated a 32% self-reported productivity uplift, primarily due to reduced repetitive triaging work.

Experimental Dataset

The dataset comprised

Data Source Quantity | Notes
JIRA Tickets 15,000 | Includes titles, descriptions, comments
GitHub PRs 6,500 Includes commit messages, diffs, review comments
Linked Tickets-PRs 3,200 Explicit mappings via issue keys

These results collectively demonstrate that the proposed RAG framework not only performs competitively on standard retrieval/

generation benchmarks but also yields tangible business value when integrated into software engineering workflows.

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 28

Analysis, Limitations, and Engineering Implications

Our findings confirm that a Retrieval-Augmented Generation (RAG) framework can significantly accelerate ticket triage and
enhance the reuse of organizational knowledge. However, several challenges must be addressed before achieving reliable, produc-
tion-scale adoption. The first concerns factual reliability—while factual grounding achieved approximately 84%, occasional hallu-
cinations were observed when the LLM extrapolated beyond retrieved evidence. This limitation aligns with broader observations in
generative Al research on the tension between fluency and factuality [30, 31]. Future iterations could incorporate retrieval-verifica-

tion layers or cross-encoder re-ranking to ensure that generated recommendations remain strictly supported by retrieved artifacts.

A second limitation involves historical bias and data quality within JIRA and GitHub sources. If earlier resolutions reflected sub-
optimal engineering practices or incomplete fixes, the system risks reinforcing these patterns. Similar concerns regarding bias prop-
agation and fairness have been documented across machine learning systems [32]. Mitigation strategies include temporal filtering,
confidence weighting, and developer feedback loops that allow human review to gradually refine model reliability over time. Dataset
drift also poses a significant technical challenge. As frameworks evolve (e.g., React 18 — React 19 or new testing libraries), the seman-
tic landscape of issues shifts, degrading retrieval precision. Regular re-embedding cycles, incremental FAISS index refreshes, and

continual fine-tuning of sentence-transformer models are essential for maintaining relevance and stability [33].

From a deployment perspective, the case study revealed that developers placed greater trust in Al-generated resolutions when trans-
parent evidence—such as retrieved PR links and rationale—was displayed alongside suggestions. This corroborates prior research
indicating that explainability and interpretability directly correlate with user adoption in human-Al collaboration [34]|. However,
real-world deployment introduces operational costs: indexing tens of thousands of artifacts in FAISS requires optimized HNSW or IVF
configurations, and repeated LLM inference adds compute and latency overhead. Emerging solutions, including hybrid retrieval
pipelines (dense + sparse), prompt caching, and edge inference using quantized models, may offer a balance between performance
and cost-efficiency [35]. Ultimately, while RAG-based systems show strong potential in automating software maintenance and ticket
resolution, their long-term success depends on mitigating hallucination risk, ensuring model adaptability to evolving technologies,

and embedding Al recommendations seamlessly into the developer workflow with transparency and scalability in mind.

Challenge

Description / Impact

Mitigation Strategy

Hallucination & Factual Inconsistency

LLM occasionally generates re-
sponses not grounded in retrieved
evidence, leading to unreliable or

misleading suggestions.

* Retrieval grounding through evi-
dence-weighted decoding

* Post-generation factual verification

Retrieval confidence scoring and entailment
checks

Historical Data Bias

Legacy tickets and PRs may contain
outdated or low-quality fixes, propa-
gating technical debt or suboptimal
patterns.

* Data provenance tracking and quality filter-
ing

* Temporal relevance weighting

Human-in-the-loop curation of training and
retrieval datasets

Dataset Drift (Framework Evolution)

Changes in frameworks (e.g., React
18

— React 19) reduce relevance of old-

er examples and embeddings.

* Periodicre-indexing and embedding refresh

* Time-aware similarity search

* Continuous fine-tuning using recent artifacts

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 29

Explainability and Developer Trust | Developers hesitate to adopt Al rec- | * Evidence-linked outputs (PRs, diffs, tickets)

ommendations without transparent . . o
supporting evidence. * Interactive provenance visualization

* Explainable retrieval highlighting relevant

context
Scalability and Cost Overhead Indexing large-scale repositories * Hybrid retrieval (FAISS + sparse search)
and frequent LLM inference increase]]
compute and operational costs. * Query batching and response caching
* Lightweightlocal LLMs and modular archi-
tecture
Knowledge Obsolescence Rapid evolution in tooling and prac- | ® Adaptive learning pipelines with online
tices makes older embeddings less embedding updates
useful.

* Model distillation for new domains

* Incremental fine-tuning driven by recent

commits

Table 4: Key Challenges and Mitigation Strategies in RAG-Based Ticket Resolution.

Conclusion and Future Work

This paper presented a Retrieval-Augmented Generation (RAG) framework that unifies JIRA tickets, developer discussions,
and GitHub pull requests into an integrated pipeline for Al-assisted ticket triage and resolution generation. By leveraging sen-
tence-transformer embeddings for semantic representation, FAISS-based Approximate Nearest Neighbor (ANN) search for large-
scale retrieval, and Large Language Model (LLM)-driven synthesis for contextual reasoning, the proposed system demonstrates how
retrieval and generation can be effectively fused to emulate human-like diagnostic and decision-making behavior. Our case study on
a React 19 microservice migration illustrated the system’s capability to recall semantically related historical fixes and produce ac-
tionable, evidence-grounded recommendations, while empirical evaluation confirmed measurable improvements in retrieval pre-
cision, recall @k, and time-to-resolution metrics. The results collectively validate the promise of AI-augmented DevOps workflows

to mitigate cognitive overload, accelerate triage, and enhance organizational knowledge reuse across software delivery lifecycles.

Looking forward, several technically promising extensions arise. Future work will aim to improve factual grounding and result
traceability by incorporating a retrieval verification layer and reinforcement learning with human feedback (RLHF) to penalize
hallucinations and reward accurate reasoning. To support enterprise-scale workloads spanning millions of artifacts, we plan to inves-
tigate hybrid retrieval architectures that combine dense FAISS indexing with sparse retrievers such as BM25 or ColBERT for pre-
cision-recall tradeoff optimization. Another frontier lies in continual and adaptive learning, where embeddings and model weights
evolve dynamically as new frameworks (e.g., React 20 or Next.js 15) and coding patterns emerge, thereby preventing semantic drift
and knowledge staleness. In addition, future iterations may integrate graph-based embeddings to better represent ticket-PR-devel-
oper relationships and improve contextual linking. Finally, practical and ethical considerations—such as auditability, explainability,
data privacy, and inference cost optimization—must remain integral to ensure the system’s trustworthiness and sustainable deploy-
ment in real-world Cl/CD ecosystems.

Key Takeaways

This study demonstrates how Retrieval-Augmented Generation (RAG) can transform traditional ticket resolution by combining
semantic retrieval with Al-driven reasoning. Using embeddings, FAISS, and large language models, the framework bridges the gap
between unstructured organizational knowledge and automated resolution workflows. The approach not only accelerates developer

decision-making but also establishes a foundation for self-improving, explainable, and scalable DevOps automation. As future sys-

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse

30

tems evolve toward autonomous software maintenance, integrating retrieval intelligence with adaptive LLMs represents a signifi-

cant step toward self-healing and context-aware engineering environments.

References

o 0N WD e

[I S N e e e e e =
= O O 00N O U WN RO

22.

23.

24.

25.

26.

27.
28.

29.
30.

31

32.

33.
34.

Antoniol G., et al. “Bug prediction using machine learning techniques”. Software Maintenance and Reengineering, IEEE (2002).
Lamkanfi A., et al. “Predicting the severity of a reported bug”. MSR, ACM (2010).

Lewis P, et al. “Retrieval-augmented generation for knowledge-intensive NLP tasks”. NeurIPS (2020).

Izacard G and Grave E. “Leveraging passage retrieval with generative models for open-domain question answering”. ACL (2021).
Gao L., et al. “RAG-based conversational agents for customer support”. WWW (2022).

Johnson J, Douze M and Jégou H. “Billion-scale similarity search with FAISS”. arXiv preprint arXiv:1702.08734 (2017).

Guo R,, et al. “Accelerating large-scale approximate nearest neighbor search on GPUs”. NeurIPS (2020).

Reimers N and Gurevych I. “Sentence-BERT: Sentence embeddings using Siamese BERT-networks”. EMNLP (2019).

Zhou] and Zhang H. “BugLocator: Locate relevant source code for bug reports”. ICSE (2012).

. Ye X, et al. “Learning to rank relevant files for bug reports using domain knowledge”. ICSE (2014).

. Bavota G,, et al. “Mining unstructured data in software repositories: A case study on bug report assignment”. MSR (2013).
. Lewis M. et al. “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”. NeurIPS (2020).

. Reimers N and Gurevych I. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks”. EMNLP (2019).
. Johnson], Douze M and Jégou H. “Billion-scale similarity search with GPUs”. IEEE Transactions on Big Data (2019).
. Xu L, Liu] and Lin C. “Data cleaning for software engineering tasks”. Empirical Software Engineering (2020).

. Rahman F and Devanbu P. “How, and why, developers write unit tests: An empirical study”. ICSE (2013).

. Reimers N and Gurevych I. “Sentence-BERT: Sentence embeddings using Siamese BERT networks”. EMNLP (2019).
. Feng Z,, et al. “CodeBERT: A pre-trained model for programming and natural languages”. EMNLP (2020).

. Johnson], Douze M and Jégou H. “Billion-scale similarity search with FAISS”. IEEE Transactions on Big Data (2019).
. Lewis, P, et al. “Retrieval-augmented generation for knowledge-intensive NLP tasks”. NeurIPS (2020).

.Kim M, Zimmermann T and Nagappan N. “An empirical study of refactoring challenges and benefits at Microsoft”. IEEE TSE

(2016).

Wolski A and Borowa A. “Migrating enterprise applications to React 19: Challenges and solutions”. Journal of Software Engineer-
ing Practice 18.2 (2023): 44-59.

Facebook Open Source. “React 19 Upgrade Guide”. Meta Platforms (2024).

Dan Abramov, R Clark, and the React Core Team. “React Concurrent Rendering and State Updates”. GitHub Discussions (2023).
K Lin, P Xu and M Zhang. “Accelerating Frontend Migration with LLM-based Code Suggestion”. Proceedings of the 2024 IEEE/ACM
International Conference on Software Engineering (ICSE) (2024): 1152-1163.

] Nelson, S Ahmed and C White. “Human-in-the-Loop Al for Code Refactoring and Issue Resolution”. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 33.2 (2025): 1-23.

Johnson], Douze M and Jégou H. “Billion-scale similarity search with GPUs”. IEEE Transactions on Big Data 7.3 (2021): 535-547.
Honovich 0., et al. “Q?: Evaluating factual consistency in knowledge-grounded text generation”. Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP) (2022): 5052-5068.

Ji Z., et al. “Survey of hallucination in natural language generation”. ACM Computing Surveys (CSUR) 55.12 (2023): 1-38.

Bang, etal. “A multitask, multilingual, multimodal evaluation of hallucination in generative Al”. arXiv preprint arXiv:2305.14739
(2023).

Shuster K., et al. “Retrieval-augmented generation for knowledge-intensive NLP tasks”. Advances in Neural Information Process-
ing Systems (NeurIPS) (2021).

Mehrabi N., et al. “A survey on bias and fairness in machine learning”. ACM Computing Surveys (CSUR) 54.6 (2021): 1-35.
Widmer G and Kubat M. “Learning in the presence of concept drift and hidden contexts”. Machine Learning 23.1 (1996), 69-101.

Ehsan U, et al. “Expanding explainability: Towards social transparency in Al systems”. Proceedings of the 2021 CHI Conference

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

https://clareus.org/csse 31

on Human Factors in Computing Systems (2021): 1-19.
35. Izacard G., et al. “Few-shot learning with retrieval-augmented generation”. Transactions on Machine Learning Research (TMLR)
(2022).

RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data

https://clareus.org/csse

