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Summary

   Clinical information systems record large amounts of data from multiple sources. This data 
could be used to model the process and learn how a decision-making algorithm (CDSS) was 
actually executed.

     We have developed an open source interface that uses data from different patient repositories 
for the integration of large data mining in a Fast Healthcare Interoperability Resources (FHIR) 
format. An interoperable solution that has emerged as a multi-layer architecture to manage 
critical medicine data. The layered architecture focuses on sharing processed information and 
making it easily available in a control panel for users of the Intensive Care Unit, improving the 
security and quality of medical care, meeting cybersecurity requirements and under standards. 
very strict ethics. The introduction of these techniques will allow health care in a more predic-
tive way, through new algorithms.

    The results demonstrate that the data mining obtained is a constant flow of highly dynam-
ic and unstructured information; The above goes against the dogma that only EHRs are use-
ful when making decisions. Only 4% of the data is used for this purpose and between 0.002% 
comes from the EHR, while even new algorithm designs will require structured data to exceed a 
greater percentage of all data.

     We conclude that any clinical process requires a volume of structured data, robust on the basis 
of data mining and is not feasible with the use of background information only from the EHR, in 
a highly demanding unit.

Keywords: Data sources; Intensive Care Units; data mining; Artificial Intelligence; Interopera-
bility; Electronic Health Records
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Introduction

    When analyzing ROI data from an ICU, the analysis is affected by the ICU admission criteria, which vary from one unit to another, 
and even within the same hospital at different times [1, 4, 8]. But we must also take into account sample selection biases, imprecise 
definitions of variables, implementation limitations, frequency of measurement of variables, subjective assignment of treatments and 
overfitting of models [8]. Similarly, many other clinical decisions are subject to subjectivity, such as when a patient is ready to be dis-
charged (selective censoring) [6] or when a patient is readmitted from the ward [7].

     This was evident during the COVID-19 pandemic, when demand exceeded ICU capacity [5]. For this, we developed a robust solution 
that captures anonymized data from different silos [9, 34] in a dynamic and highly stressful environment of a multipurpose and undif-
ferentiated public service.

     When analyzing or predicting outcomes of treatment decisions, such as clinical decision support systems (CDSS), a greater amount 
of data must be incorporated from different sources. But ultimately, we need to know how we will make decisions and what these data 
sources were and their relative importance.

Importance of methodological soundness

     Although EHR data offer enormous research opportunities, their analysis is challenging for several reasons. First, the large feature 
space introduces more opportunities for variation in data collection with respect to the technology used and sampling frequency 
compared to repositories and clinical trials. Second, the cohort, exposure, and outcome are defined post hoc and therefore provide an 
opportunity for data wrangling and p-hacking. Third, the type and quality of data, including which patients are captured, are highly 
dependent on clinical practice patterns that introduce sampling selection biases leading to spurious associations. It should be noted 
that EHR data is not primarily collected for research purposes, but rather represents the digital escape from clinical care or, in some 
cases, serves an administrative function such as billing. But, we have a great variety and quantity of information sources distributed in 
multiple systems (repositories) that, in addition; They are in different interfaces, with different formats [12] and we can use them in 
decision making in ICUs. In recent years, with the increasing use of EHR data, we have observed that EHR-based studies are sometimes 
plagued by similar problems that affect their validity or applicability in clinical practice and this is due to their importance. relative be-
tween different data sources. Furthermore, although FHIR is widely used by health systems around the world, there remains a paucity 
of health system-derived data publicly available in FHIR.

     Therefore, an HL7 FHIR-based system provides unprecedented opportunities for broader dissemination and sharing in the logic of 
a CDSS, with innovative capabilities and instruments that facilitate the development of predictive models in the critical environment.

     The exchange of clinical information is not continuous due to several technical difficulties, with information interoperability being 
one of the main technical challenges. If interoperability standards allow the transfer and exchange of health data mining, we must also 
consider authentication, authorization, registration and auditing mechanisms that must guarantee the privacy, integrity and confiden-
tiality of personal information.

Objectives of this work

     We all know that enormous amounts of data are generated in the intensive care environment (a true data mining). Given its potential 
role in CDSS. In this article we review the current set of CDSS standards that are based on HL7-FHIR in the development of a solution 
for an ICU of a public health system. Ultimately, large sample sizes may provide greater statistical power to perform subgroup analyzes 
and reduce the risk of type II errors.

     Our objective is to demonstrate the large data mining of an ICU and what are the different sources of clinical data that could be ef-
fectively used in decision making [5, 6] when using a data capture solution, estimating the relative importance of the different datasets.
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Methodology 
First part: Selection of literature

    The literature search was carried out in PubMed and Embase, we systematically searched for observational studies published 
between January 2019 and July 2021 and narrated reviews before November 24, 2023. Abstracts without full text were excluded. 
Search terms used to find literature included: (“machine learning” or “deep learning” or “neural network” or “artificial intelligence”) 
and (“ICU”, “Critical care”, “Electronic Clinical Record”, “Take of Clinical Decisions”). Initially, a total of 74 articles were identified with 
these search terms, of which 15 non-full-text abstracts were excluded, leading to a final count of 59. Given the narrative nature of this 
review, the final cohort of articles to provide the reader with the best overview of the topic and were not intended to be exhaustive. 
We selected some other research manuscripts, systematic reviews and doctoral theses, and referenced a number of narrative reviews. 
This article is based on previous studies and only contains studies with human participants.

Second part: Application of the principles of Artificial Intelligence

     The original prediction system is mainly based on CDSS, usually using data collected at the bedside in the ICU by a Smart UPC sys-
tem [9]. These massive and constant streams of data include heart rate, respiratory rate, blood pressure (systolic, diastolic and mean, 
differential pressure), temperature, urine output. Information from the electronic medical record (EHR), monitoring of mechanical 
ventilators, coverage of visual images from closed circuit video systems.

     It is extracted through the various application programming interfaces (API); Image data is used via DICOM data capture protocols. 
Or through gateways, from the same suppliers for various clinical devices. Likewise, we collect and analyze more and more data from 
different sensors in critical units, through biosurveillance monitors and other Internet of Things (IoT) data sources in real-time trans-
mission to a solution based on different layers. This information timed on timelines is displayed on a dashboard for the decision-mak-
ing work of doctors and paramedical staff in the command and control rooms that are incorporated into the ICU [9].

     The harmonization and standardization of digital medical information for research purposes is an ongoing challenge and collabo-
rative effort. Current research data repositories typically require extensive efforts to harmonize and transform original clinical data. 
The FHIR standard provides a framework for structuring health data and supporting data exchange between disparate systems and 
providers. FHIR documentation is very detailed and openly available. Briefly, FHIR consists of a set of resources that describe the most 
common entities in healthcare. As local contexts are expected to deviate from the global standard, FHIR introduces a mechanism called 
“profiling.” Profiles are modifications of core FHIR resources intended for use in a local context, such as a hospital system or primary 
care clinic. These profiles allow the flexibility to capture data as it is exchanged on the local system, while also allowing for standard-
ization, as the majority of fields present in each resource will be consistent with the global standard (the base resource). FHIR also 
provides significant details on all aspects of information sharing and has a large ecosystem of tools, particularly around data sharing. 
The FHIR format was designed primarily to represent processes; therefore, it closely resembles the clinical data model and is more 
available in modern electronic health systems. However, no common standardized data format is directly suitable for statistical analy-
ses, and data must be pre-processed before statistical analysis.

    Demographic data, comorbidities, vital signs, medications infused, and test results are included in the training data set in the dif-
ferent algorithmic models of future use in an ICU [14]. For example, a model based on deep learning can advance in the prediction of 
ventilatory asynchronies or sepsis [11] it will have better performance and its analysis of the area under the curve will be more opti-
mal if the training data increases. In addition to the deep learning mentioned above, other studies have developed new explainable AI 
models for the prediction of cardiovascular, neurological pathologies, etc. [6, 11] in ICU environments.

     With sufficient data, we are in a position to perform normal artificial intelligence (AI) with training data and control for algorithms 
according to the different requirements that we have been and will build for the different pathologies [4].
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    With the models developed based on public data from the UCI [24], we can correlate results with our system. The explainable AI 
model extracts time-varying features and is capable of real-time prediction of different pathologies based on clinical requirements.

     The influence of each feature on real-time forecasting will be further analyzed to show their interoperability in future reports.

     This model not only has superior performance in estimating the risk of isolated pathologies in real time, but also provides inter-
pretable information to understand the different risks of patients with multiple pathologies [7]. In our work proposal, to evaluate this 
function, for example, the performance of deep learning was compared with other methods in the early prediction of different pathol-
ogies and which we will make explicit in future reports.

Part Three: The security and challenges of using AI as a decision-making system (CDSS). Data bias errors

     The potential to create AI-based healthcare applications can match or exceed the capabilities of doctors in specific diseases. Howev-
er, health care is a complex and changing topic. When the AI system makes a decision, doctors and safety engineers essentially cannot 
control the process, and it is difficult to fully understand how the AI system makes the decision accurately. Compared to standard 
clinical practice, AI-based tools also require generating ethical restrictions and safety standards.

     The clinical context of an ICU is very complex and many variables (new therapies, new diagnoses, different intervention times and 
intervention methods, trained personnel and own protocols) will affect the results. However, the requirements of all clinical environ-
ments shown in the computational model are difficult to achieve at a technical design stage. Therefore, the behavior of our solution 
in the system may not adequately reflect clinical intentions [34]. This issue currently resolves some aspects of the process, without 
limiting the number of entries, but may have unintended consequences.

    It is the doctor who interprets the data, he must reason about the most important content in the different stages of a disease. For 
example, doctors may choose to ignore highly abnormal test results, which may be due to errors in sampling, testing, or recording. 
In this way, the definitions are prone to errors and are not fixed. Additionally, if reported, model performance should be compared to 
existing algorithms, whether based on expert opinions or based on machine learning; If machine learning-based algorithms are used 
to compare, differences. Differences in definitions should also be explored. In recent years, this analysis has been carried out using the 
EHRs as a basis. However, EHRs often do not capture the relevant clinical determinants of health in such a short space of time and their 
multiple clinical parameters that are being generated in continuous, real-time monitoring of an ICU. 

    Figure 1 shows a list of data sources and their total data load/hour; total data/day and capture percentage in an undifferentiated 
public ICU.

    On the other hand, there are problems in the different AI models, for example, many studies have only trained and validated the 
model in the same cohort of patients with static databases, but have not yet tested its generality in other populations in dynamic times. 
These models need to undergo further prospective testing to demonstrate their clinical benefits or other outcomes (the reason for our 
upcoming publications).

    AI will also face many implementation difficulties when used in clinical practice in an ICU. Currently, many organizations are ill-
equipped to implement AI in clinical practice, requiring considerable AI expertise and mature information technology or IT capabili-
ties, such as assessment, fusion, continuous monitoring, and AI recalibration. The security and reliability of digital data collection and 
use must also be addressed.
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Figure 1: Data loading table and graph, used in Smart UPC system.

Figure 2: Shows a logarithmic graph of the data collected in 1 patient in 8 days of ICU with video control.

Results

    More than 3,000 hours of work have been necessary between medical teams and specialized technicians from the UPC to obtain a 
data management platform scalable hybrid system to easily collect, process, protect, and analyze all of this data to evaluate ways to 
improve patient outcomes [9, 34].

    With data visualization and processing capacity for medical decision making and also in nursing, pharmacology and kinesiology 
clinics. We integrate different systems in Standard HL7v3 FHIR formats on our platform [9].

    The situational analysis of each patient through the visualization layer of the Integrated Command Center and deployable on any 
mobile device in the future Figure 3 [34].
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    Decision-making and predictive models are not yet widely developed with the current known health systems and many improve-
ments will be necessary to serve as a tool in our healthcare centers. Here we present the ability of a solution to maintain different 
datasets and their relative importance in clinical decision support systems (CDSS).

    Here we demonstrate that in general the data available through a Smart UPC solution reaches a value of 2244 MB/hr, that is, an 
average of 53.34GB/day, which is available for decision making (CDSS). 

    Of the total available data; the EHRs only reach 0.8% of the data used. For 1 patient, during 8 days of ICU with video control (av-
erage) we can collect data according to what is expressed in the graph in Figure 2. Structured data represents only 4% of the total. 
Unstructured data, 46.5% and metadata, 34%. There is a percentage of data: 14.5% that correspond to different variable sources of 
unstructured, non-daily data use in the ICU (dialysis machines, ultrasounds, echocardiography, plasmapheresis equipment, neurolog-
ical multiparametric monitoring equipment, interconsultant evaluations, etc.).

     Our results, using this Smart UPC solution, show that the data volume of an EHR reaches 0.002% and the current decision making 
is carried out with only 3.964% of the total.

Figure 3: Dashboard solution.

Conclusions

     Databases are essential for innovative and disruptive solutions. Any clinical process for Decision Making supported (CDSS) by Arti-
ficial Intelligence requires a robust volume of structured data to carry out validly effective algorithms.

     A CDSS system, such as Smart UPC, is supported by structured data from multiple sources, which is evident in a highly demanding 
unit such as ICUs.

     The data represented by the EHRs represent 0.002% and only 4% is useful as structured data that can be used in predictive models.
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